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The behavior of a dynamic system is considered in the event of violation of the condi~
tions of existence of a periodic state due to alteration of the sequence of passage of the
phase trajectory through the piecewise continuity domains, It is shown that doubling of
the oscillation period is possible under these conditions,

Piecewise~continuous dynamic systems afford a good description of the behavior of a
broad class of machines (relay, vibroimpact, dry friction machines,etc. ). Such systems
entail the possibility of specific violations of the conditions of existence of periodic
motion due to changes in the number of segments of the phase trajectories of which the
trajectory of this motion is "matched" (C-bifurcations), In [1] it was shown that C-
bifurcation makes possible not only wansition of one type of periodic state into a state
of another type but also the merging of these two states and their subsequent disappear-
ance, (However, no examples of dynamic systems in which this possibility was realized
were cited), The present paper demonstrates the possibility of yet another mode of sys-
tem behavior with C-~bifurcations, namely the doubling of the oscillation period, The
period doubling criterion, as well as the criterion of merging and disappearance of two
states, are obtained, It is shown that of the three possible cases of behavior of a system
subject to C-bifurcations, only one case, namely transition of a periodic state ofone type
into a state of another type, is a consequence of the choice of mathematical model of
the system in question, i. e, is noncoarse with respect to the class of nonlinear character~
istics {2}, The first examples concern the "hard” doubling of the oscillation period and
the case of merging of two states with C~bifurcations in a linear system with a displace-
ment limiter, The results are then used to isolate the approximate parameter domains
which allow subharmonic oscillations of order ’/z in a system with a symmetric nonlin-
earity characteristic in the form of 3 third-degree polynomial. The isolated domains
are in good agreement with the familiar results of experimental studies and simulation
on an analog computer carried out by Hayashi {37,

1, Let us consider the dependence of the periodic motions of a piecewize~-continuous
dynamic system on a certain parameter, The phase space of such a system is divided
by certain surfaces (with given conditions of matching of the phase wrajectories) into
domains in each of which the motions are described by differential equations with con-
tinuous and sufficiently smooth right sides,

As we know, various types of periodic motions are possible in piecewise-continuous
systems, A periodic state of a given type is characterized by a completely defined
sequence of passage of the phase point, and therefore of the phase trajectory matched in
a certain way out of individual segments, through the piecewise-continuity domains, In
the case of C~bifurcation the periodic motion trajectory passes through the boundary of
one of the matching surfaces, which results in violation of the conditions of existence of
this motion and corresponds to the appearance or disappearance of'a segment of the tra-
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jectory in one of the piecewise continuity domains,

We shall show that C-bifurcation can result in sprouting of a "two-turn"state with a
double oscillation period. Each of the turns of the trajectory of this motion corresponds
to one of the types of periodic motion involved in the bifurcation,

The mathematical problem corresponding to the task we have posed can be formulated
in a form similar to that of {1].

Let us consider the point map of some sufficiently smooth surface D which is depen-
dent on the parameter j, Let the map have a fixed point M°for g = . The phase
trajectory L, of the corresponding periodic state which passes through the point M° also
passes through the boundary I' of the matching surface IT (Fig.1). Let us isolate on the
surface D the "line" S passing through M® which
is mapped into the boundary I' by phase wajec-
tories close to Ly, The curve S separates the
surface D into the two half-neighborhoods D,
and D_; the phase trajectories (for example, L,
and L_) emerging from these half-neighbor-
hoods correspond to different equations of motion,
We assume that the point mapping T is continu-
ous in the neighborhood M°, and that its depen-
dence on the phase coordinates and on the para-
meter in each of the half-neighborhoods is suf-

Fig. 1 ficiently smooth,

. Let us transfer the origin of the fixed point
M? of the map, We choose one of the coordinate axes, e, g, u,,in such a way that the
domains D, and D_ are assoctated with differing signs of 1,. We can now write the
equations of the mapping T linearized in the neighborhood of L as follows, The map-
ping T+, T

Uy = 21 Cpgtly + Ginlly + by + ... (@, >0) (1.1)

S
—t
u = E Gpliy + Tinliy + bp + ... x, <0 (1.2)

g==i

The mapping T,

k=14,2,..,n
The two-turn periodic state is associated with a pair of fixed points M* and M** of
the mapping T+T~, The coordinates of the fixed points can be found from the system
of 2n equations n—i

U = 2 Gpslhs™ + Qi Un*+ Dplir ... (1.3)
ge=i
n—i
Uy* = 2 Bpglty™™* + Benld** - b+ ... (k=1, 2, ..., n)
s=1
u,* >0, u,** <0 (1.4)
We introduce the differences
6k = uk** — uk* k=1, 2, .., n)

Now, instead of Eqs, (1, 3) we obtain the linear approximations
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ne—{

uk** = 2 aktus* + Gﬁnun* + blel‘l' ('1.5)
i =t
6, + 2 @y 0, + a;nan = U ** (a;n -~ @kn) ('1.6)
gaomi

From system (1, 6) we obtain
Gk == i—;—({—ﬁ un*"‘ (k==1,2,..,n) (1.7)

Here X* (— 1) denotes the characteristic polynomial %* (z) of the mapping T+ for
z = — 1, and By denotes some functions of the coefficient gy, We assume that the
eigenvalues of the characteristic matrix differ from unity,

The difference §,, is given by

F () =y (A
8p = u#* —y % = X { x*‘)(—ix) (=1) L
un*x+ (""1) = un**x‘("1) (LS)

The dependence of the required coordinates on the parameter {4 can be obtained by

substituting the values

Hence,

B

in accordance with (1,7) and (1.8) into Egs. (1. 5),
Nl
8
U = 2 Brelly™ + [agn - i’-Tf':T)'} Un* 4 Opl (1.9)
szl
If the eigenvalues of the matrix consisting of the coefficients of the required coordi-
nates of Eqs, (1. 9) are different from unity, then Eqs. (1. 9) have a nonzero solution,
However, by virtue of the piecewise continuity of the system under consideration we
must also require fulfillment of conditions (1.4), In accordanee with (1, 9) and (1, 8)
the values 1,,* and y,** can be expressed as

Up* = A" (—1)n, u* = A3 (—1) p (1.10)
From (1, 10) we infer that inequalities (1,4) are fulfilled if
(=D (1) <0 (1.14)

Condition (1,11) is the criterion of doubling of the oscillation period with C-bifurca-
tions, It is practically convenient, since to solve the problem of appearance of a sub-
harmonic oscillation we need merely determine the signs of the comesponding charac-
teristic polynomials for z = —1 in the limiting case of coincidence of two periadic
states, This does not entail a special choice of the system of phase coordinates as requi-
red in the theoretical proof of the possibility of period doubling, Condition (1,11) is
related to the character of stability of periodic states and is invariant relative to the
choice of coordinates,

2, One of the important problems of the theory of bifurcations of periodic motions is
the determination of the so-called "dangerous boundaries”, The notion of dangerous
boundaries introduced in [4] for dynamic systems with analytic right sides can be natu-
rally extended to the case of C~bifurcations in piecewise-continuous systems, Following
Andronov (see the Preface to [4]),we define a dangerous C-bifurcation boundary as the
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boundary of existence of a periodic state whose slightest violation results in uncontrol-
lable (by choice of a sufficiently small disturbance) growth of the deviation of the state
of motion from the state under consideration,

The case of merging of two periodic states followed by their disappearance is one of
dangerous C-bifurcation, Linearized equations (1,1),(1.2) readily yield the dangerous
C-bifurcation criterion in a form similar to condition (1, 11),

Let a fixed point M* of the mapping T+ and a fixed point M** of the mapping T~
exist for some value of the parameter . Setting the values u;’ = u, = u* in

(1.1) and the values 'u;’ = ux = up** in (1.2), we obtain the following values for
the coordinates: B, B
Up* = —2—n + .., Up*¥* = —Z"—p-- ., A
" Tt oiairaie= i @1

Requiring fulfillment of the conditions u,* ™> 0 and u,** << O, we arrive at the
following dangerous C~bifurcation criterion:

i+ (+1)<0 (2.2)

Note 2,1, We know [5] that doubling of the oscillation period and merging of
two periodic states with their subsequent disappearance can occur in dynamic systems
with analytic nonlinearity characteristics on the boundary of a steady state, The former
takes place when one of the roots of the characteristic polynomial becomes ~1 on the

the latter occurs for z = --1 on the boundary ¥,
x(F1)=0 249

With the corresponding transition from piecewise~continuous characteristics to conti-
nuous characteristics, conditions (1.11) and (2,2) become Egs, (2, 3) and (2. 4), so that
the general picture of the dependence of trajectory behavior on the parameter remains
unchanged,

This fact characterizes the coarseness of the parameter space of a dynamic system
relative to the class of nonlinear characteristics [2] and points to a profound connection
between the behavior of a real dynamic system and the C-bifurcations of motion in the
chosen piecewise-continuous mathematical model of this system; of the three possible
cases of behavior of a system with C~bifurcations only the case of transition of a perio-
dic state of one type into a state of another type is a consequence of the choice of mo-
del, It is therefore expedient to study the C-bifurcations of the periodic motions of
piecewise-linear models of dynamic systems in investigating the qualitative structure
of the parameter space ; this is because such models are more amenable to analysis than
the bifurcations N_ and ¥, in models with continuous nonlinearity characteristics. An
example using this approach appears in the last section of the present paper,

Note 2.2, The problem of preservation or violating of stability of a state with
C-bifurcation can be solved by analyzing the roots of the corresponding characteristic
polynomials, However, certain general conclusions can be drawn for specific cases,

Let both periodic states taking part in a bifurcation be stable, Then doubling of the
period and merging of two states are impossible, since the signs of the characteristic
polynomials for z=—1 or z = -1 are the same, so that conditions (1,11) and (2.2)
are not satisfied. This case of C~bifurcation corresponds to a change in the type of
periodic motion,
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Suppose now that a C-bifurcation involves transition of a stable state into an unstable
one, The continuity of the change in topology of the phase space is preserved [5, 67 if
the transition is accompanied either by the appearance of a stable osciilation or by the
disappearance of an unstable oscillation of doubled period, We note that the latter case
corresponds to a dangerous C-bifurcation,

3. For example, let us consider doubling of the period and dangerous C-bifurcations
of forces oscillations of 2 linear oscillatory system on encountering a dispacement limi-
ter (Fig, 2).

) - The equation of system motion for << d in dimen-
£ —= sionless form is
5;3‘:\;',, 2+ 22 + = P () 3.1)

where P (t) is a T -periodic function of time, and the
coefficient A characterizes linear friction (0 << A <C 1).
Fig, 2 The solution of linear equation (3, 1) can be written as

Z (1) = p (%) + €2 {Cy5in 8 (v — Tp) + G4 0038 (T — Ty)} (3.2)
Here p (1) is the particular solution of the inhomogencous equation, i, e. the steady
forced osciliations of the system; C; and C, are integration constants which are deter-
mined by the values of z, and 2, at the instant T = T,; the coefficient § = V1 =2
Let us rewrite solution (3, 2) in the form of the equations of the point mapping corre-
sponding to the segment of the phase trajectory lying between the point M; {z, i Tt
and the point M;{z;, z';, 7;},

N Ay | Ao
(&, % ) =p;i— %+ € i (@ — P (T sindv;; -+ cos 6"i:‘> T
+ .ii_.%:ﬁ.siné‘rij} = { (3.3)
Zi =g @, T T) =P e X

. . . T =Py
X {(zi —py) (Gosatﬁ - %’—sm&tﬁ) ——3 : smétﬁ} T=T—T

If the system oscillations do not reach the limiter, then Eqs, (3. 3) define the behavior
of the system both in the transient state (trajectory MM, in Fig, 3a) and in the steady
state, where z()=p(), T@=p() (3.4)

'Equations (3, 3) are necessary in this case for writing out the characteristic polynomial
x* (2) = 0. The points M, = M, and M, = M; correspond t0 z; = z; = 0.
Varying Eq. (3. 3) in the variables z,’, T, Z;, 7; in the neighborhood of periodic
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motion (3,4) and setting 7;; = I, 8zf = z8z;", 6t1; = 207, we obtain

©f 0z (0] 9%+ 2 (3f /9t

K () =\ 0g )0z (9g)0v)u+2 (98 /Ot (3.5)

Substituting the values of the partial derivatives obtained from Eqs, (8, 3) into (3. 5),
we arrive at the expression

x* (2) = z4 (22 — 22¢>T cos (8T) + e~7) (3.6)
From this we obtain the value of the characteristic polynomial for z = X 1,
x* (£ 1) = 25 [>T = cos 8T)® + sin? 671 > 0 3.7

If the system oscillations reach the limiter, then Eqs, (3, 3) determine its behavior
only on the segments MM, and M, M, of the phase trajectory (Fig, 3c), Let the
equations of the point mapping of the surface z = d into itself corresponding to the
segment M, M, of the majectory of motion with an operating limiter be expressed in
the form -5 @) =0, =z (3.8)

Varying Egs, (3, 3) and (3, 8), respectively, for the wajectory segments M M,;, MM,
M,M, in the neighborhood of forced oscillation (3, 4), setting

Ty — To =T, Oz = 28z, Oty = 207,
and carrying out the necessary operations, we arrive at the following characteristic poly-
nomial; X (2) = &7z 2;" 2™ (1 + 2" ® — @,) sin 6T (3.9)

In the case of C-bifurcation (Fig. 3b) the value z, > 0, and ;" < 0, since the

point of tangency corresponds to Zmax . Hence,
sign %~ (2) = sign {z (1 + 2, ® — ®,) sin 8T} (3.10)
By virtue of (3. 7) the value x* (& 1) >> 0, so that in the problem under considera-

tion we obtain the condition of a dangerous C~bifurcation (2, 2) involving the merging
of two states followed by their disappearance in the form

(1 + z,"® — ®,)sin 8T < 0 (3.11)
and period doubling condition (1, 11) in the form
(A + z," ® — @) sin 87 > 0 (3.12)

The first factor in (3.11), (3.12) reflects the properties of the limiter; the second
factor reflects the properties of the linear oscillatory system,

Let us note an important distinctive feature of the bifurcation in question, Since
(87 / 8T3)y = x,"—= 0 at the instant of contact, it follows that the polynomial X~ (2)
has the roots z, — 0 and 2z, — oo.which indicates the instability of the nonlinear state
taking part in the bifurcation, Hence, on fulfillment of (3.11) the state of stable forced
oscillations of the linear system merges with the unstable nonlinear state of motion, If
condition (3.12) is fulfilled, then the stable state of the linear system becomes an unsta-
ble nonlinear state, This is accompanied either by the vanishing of the unstable state
or by the appearance of a stable subharmonic state of doubled period,

On merging of the stable periodic state with the unstable state the dynamic system
experiences a "hard" wransition to another stable state of operation, In the simplest
case the latter state takes the form of a periodic motion of the same type as the vanished
unstable state, Condition (3, 11) becomes condition (3, 12} for sin 87 = 0 or
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TYI—=A=nn (n=0,1,..) (3.13)

Expression (3, 13) defines certain nodal bifurcation points in the parameter space of the
dynamic system from which several bifurcation boundaries of various types must emerge,

The results obtained in the present study and the behavior of a system on the stability
boundary of a state as known to us from bifurcation theory [5] enable us to "synthesize”
the possible structures of these nodes qualitatively, Thus, Fig, 4 shows the two simplest
structures, Here the boundaries &, cortespond to the merging of stable and unstable states
of a single type when the root of the characteristic polynomial assumes the value +1,
The boundary N_ corresponds to soft doubling of the period on appearance of the root
z = —1. On the boundary C, the state involving two segments of limiter operation into
a one~-segment state with preservation of the oscillation period and stability,

The state of stable forced oscillations of a linear system changes into a nonlinear state
occasioned by the limiter at the boundaries ¢, and C4. This can be accompanied either
by a soft (Fig, 4a) or by a hard (Fig, 4b) doubling of the oscillation period at the C-bifur-
cation boundary C, . To determine which of the cases of doubling corresponds to the
forced oscillations under consideration, we must investigate the stability of the two-turn
periodic state with C-bifurcation. The trajectory of this state of motion {Fig,3d) con-
sists of the segments M M;, M,M, and M,M, defined by Eqs, (3, 3) and of the segment
MMy defined by (3, 8), After some simple but cumbersome operations of deriving and
simplifying the appropriate characteristic polynomial, we arrive at the following expres-
sion: % (2) == =~ 8722z 24 2,~2AT (1 4 2" @ — @) sin 287 (3.14)

Thus, one of the roots of ¥(z) = 0 also increases without limit in the case of a doubled
oscillation period as z;" -+ 0, and the state turns out to be unstable, Hence, in the domains

.
I mar A, , 2 N,
My
o a
A L
4 (

wiznsy O

Fig, ¢

of parameter variation satisfying condition (3,12) we expecta hard doubling of the oscil-
lation period (Fig, 4b), Quite naturally, a scructure of decomposition of the parameter
space into domains of periodic motions of various types more complicated than that in
Fig.4 is possible in the neighbothood of bifurcation nodes.

4, The above condition of period doubling with C-bifurcations (expression (3,12)) is
quite coarse relative to the nonlinearity characteristic of the oscillatory system under
consideration, It is therefore interesting to verify whether the conditions obtained for
a piecewise-linear system are also applicable to systems with a "smooth” nonlinearity
characteristic,

To this end we begin by considering linear oscillatory system (3,1) with two symmet-
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rically positioned fixed limiters, As our relation (3, 8) between the coordinates of the
initial and final points of thr trajectory M, M, in this case we can take the law of instan-
taneous impact with the velocity restitution coefficient R (0 << R < 1),
T,—1,=0 =z =—Rz 4.1)
Hence, in expression (3, 8) we have
The characteristic polynomials corresponding to symmetric periodic states are redu-
cible to the form
¥ (2) = 2y (2% + 22¢72T cost/ BT + em>T) (4.2)
¥~ (2) = 871z (1 + R) z,” e™T gin Y/,8T
and period doubling condition (1.11) reduces to sin /,87 <2 0, We find that the
sprouting of subharmonic oscillations of erder 1/, is possible if the ratio of the natural
frequency & to the frequency @ = 2n / T of external excitation satisfies one of the

conditions omtl<dlo<2m+1), n=012.. 4.3)
Let us consider the system with the nonlinearity charagteristic expressed by the third-
degree polynomial [3] .- -+ Az’ + oz + c42% = Bceos2t (4.4

A<<tatea=1)

We obtain an approximate relationship between the natural oscillation frequency and
the amplitude from (4. 4) by setting B = 0 and seeking the solution in the form z =
=X cos 81, 822 ¢ + Yy g X? (4.5)

The amplitude of the forced oscillations can be determined from the external force
frequency by means of the approximate expression [3]

¥ B
T (4.6)

Let us use expression (4. 3) obtained for a piecewise-linear system to estimate the
domains of appearance of subharmonic oscillations of order 1/, in system (4,4). To this
end we substitute the value of § obtained from (4. 5), (4. 6) into condition (4, 3),

i 7 3cal2 /2
1< 5| ot ity | <2+ meoza.. &)

The above result can be compared with the data obtained both experimentally and
by analog computer by Hayashi for subharmonic oscillations of order !/, (see [3]). Set-
ting w = 2, ¢; = 0 and taking as the unit the value of B=*corresponding to the center
of the first domain, we obtain from (4, 7) the following intervals of relative amplitude
B/B* in which the subharmonic oscillations under consideration are possible ;

(0.66 — 1.33), (2.00--2.66), {3.33 — 4.00),...

Hayashi [3] obtained only two intervals for the case of a zero constant external force
component (Figs, 7,22 and 7,25 in [3]).

After a similar division by B* these intervals turn out to be as follows: (0, 9~1,1),
(2.0-2, 3) according to the results obtained by analog computer, and (0, 8~1,2), (1, 8~
—2,1) according to the experimental results, A damped system was studied in both cases,
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STATE OF A SANDWICH PLATE
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1.1, VOROVICH and I, G, KADOMTSEV
(Rostov-on=-Don)
(Rece{ved March 11, 1970)

The problem of the passage to the limit from three-dimensional problems of elasticity
theory to two-dimensional problems has been investigated in [1, 2] for multilayered
plates, A first {terarion process has been constructed therein on the basis of methods
developed in {3, 4L

A construction of homogeneous solutions of elasticity theory problems for sandwich
plates of symmetric configuration is given below, As in the case of a homogeneous
plate [6], it is shown that the complete solution consists of a biharmonic, potential and
vortex solution, The potential and vartex solutions are in the nature of an edge effect,
Comparing them 1o the case of a homogeneous plate, shows that the edge effects can be
both weaker and stronger, depending on the physical and geometric parameters of the
sandwich plate,

The accuracy of some applied theories [6] is analyzed on the basis of the solution
constructed, and limits for their applicability are established,

1, Let us consider a sandwich plate comprised of isotropic layers which are symmetric
fz relative to the middle plane of the middle layer

5 (Fig.1). Let p;denote the shear modulus, i the num-
, ber of the layer, 0; the Poisson's ratio, Let the outer
2k 2 "'7 layers of thickness & have the elastic characteristics
A ~ ' viand p,, and the inner layer of thickness 2h the
¥ A elastic characteristics v, and {i,.

Fig. 1 Let us assume the outer plane faces to be stress-



