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The behavior of a dynamic system is considered in the event of violation of the condi- 

tions of Cxistice of a periodic state due to alteration of the sequence of passage of the 
phase Ua+Xox’y through the piecewise continuity domains. It is shown that doubling of 
the oscillation period is possible under these conditions. 

Piecewise-continuous dynamic systems afford a good description of the behavior of a 

broad class of machines (relay, vibroimpact, dry friction machines,etc.). such systems 
entail the possibility of specific violations of the conditions of existence of periodic 
motion due to changes in the number of segments of the phase trajectories of which the 
trajectory of this motion is “matched” (C-bifurcations). In Cl] it was shown that C- 
bifurcation makes possible noz only transition of one type of periodic state into a state 
of another type but also the merging of these two states and their subsequent disappear- 
ance. (However, no examples of dynamic systems in which this possibility was realized 
were cited). The present paper demonstrates the possibility of yet another mode of sys- 
tem behavior with C-bifurcations, namely the doubling of the oscillation prfod. The 
period doubling criterion, as well as the criterion of merging and disappearance of two 
states, are obtained, It is shown that of the three possible c&s of behavior of a system 
subject to C-bifurcations, only one case, namely transition of a periodic state ofone rype 
into a state of another type, is a consequence of the choice of mathematical model of 
the system in question, i.e. is noncoarse with respect to the class of nonlinear character- 
istics @I. The first examples concern the “hard” doubling of the oscillarion period and 
the case of merging of two states with C-bifurcations in a linear system with a displace- 
ment limiter. The results are then used to isolate the approximate parameter domains 
which allow subharmonic oscillations of order l/t in a system with a symmetric nonlin- 
earity characteristic in the form of a third-degree polynomial. The isoiated domains 
are in good agreement with the familiar results of experimental studies and simulation 
on an analog computer carried out by Hayashi p]. 

1, Let us consider the dependence of the periodic motions of a pie~~~e-~ontinuo~ 
dynamic system on a certain parameter. The phase space of such a system is divided 
by certain surfaces (with given conditions of matching of the phase trajectories) into 
domains in each of which the motions are described by differential equations with con- 
tinuous and sufficiently smooth right sides. 

As we know, various types of periodic motions are possible in pie~ew~gcon~nuo~ 
spuns. A periodic state of a g&en type is charaacrlzed by a completely defined 
sequence of passage of the phase point, and therefore of the phase trajectory matched in 
a certain way out of individual segments, through the piecewise-continuity domains. In 
the case of C-bifurcation the periodic motion trajectory passes though the-boundary of 
one of the matching surfaces, which results in violation of the conditions of existence of 
this motion and corresponds to the appearance or disappearance of’s segment of the tra- 
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jectory in one of the piecewise continuity domains. 
We shall show that C-bifurcation can result in sprouting of a “two-turn”state with a 

double oscillation period, Each of the turns of the trajectory of this motion corresponds 
to one of the types of periodic motion involved in the bifurcation. 

The mathematical problem corresponding to the task we have posed can be formulated 
in a form similar to that of PI. 

Let us consider the point map of some sufficiently smooth surface D which is depen- 
dent on the parameter p . Let the map have a fixed point M” for p = 0 , The phase 
trajectory Lo of the corresponding periodic state which passes through the point M” also 
passes through the boundary I? of the matching surface II (Fig. I). Let us isolate on the 

surface D the “line” S passing through MO which 
is mapped into the boundary I’ by phase trajec- 
tories close to L,. The curve S separates the 
surface D into the two half-neighb~h~s D+ 

L_ and D_ ; the phase trajectories (for example,L, 
and L_) emerging from these half-neighbor- 
hoods correspond to different equations of motion, 
We assume that the point mapping $’ is continu- 
ous in the neighborh~ M”, and that its depen- 
dence on the phase coordinates and OR the para- 
meter in each of the half-neighborhoods is suf- 

Fig. 1 ficiently smooth. 
Let us transfer the origin of the fixed point 

MO of the map. We choose one of the coordinate axes, e, g, an, in such a way that the 
domains D, and D_ are assocfated with differing sggns of 8,. we can now write the 
equations of the mapping T linearized in the neighborhood of LO as follows. The map- 
ping T+ . 

%’ = ~‘at&, + ah:,u, -j- bkp + . . . (yl > 9 (1.1) 
s=l 

The mapping T-, n_-i 

k = 1, 2, . . . . n 

The two-turn periodic state is associated with a pair of fixed points M* and M** of 
the mapping T+T-. The coordinates of the fixed points can be found from the system 
of 2tb equations n-l 

r&g** = 2 t aks% * + a& u,,*+ bhp-p . . . 0.3) 

uk*= ii a@&**‘;1 a&&,** + b# + . . . (k = 1, 2, . . . . n) 
r=l 

u,* > 0, %** < 0 (1.4) 
We introduce the differences 

6 k = I.+** - t&h* (k = i, 2, . . . . n) 

Now, instead of Eqs. (1.3) we obtain the linear approximations 
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4 + 2 a& + a&43, = u,** (& --i alrn - ) (1.6) 

From system (1, Sj we obtain 

&R = fjk 
x+ (-1) %** (k 3= i, 2, . . . . n) (1.7) 

Here X+ (- 1) denotes the characteristic polynomial x+ (2) of the mapping T+ for 
Z”-_ 1, and & denotes some functtcws of the coefficient ab6- We assume that the 
eigenvalues of the characterisdc matrix differ from unity. 

The different+ &is given by 

8 -e-u **_u *= 
n- n n 

x+ t--11 -x-(--1) &** 

Hence, 
Xf f--1) 

u,*x+ (--1) = zQ*x- (--2) (13 
The dependence of the rcquirad coordinates on the parameter &r can be obtained by 

subs@.tting the vaiues 
*t = @k 

4 u&*+x(-‘)+ 
* 

in accordance with (1.7) and (1.9) into Eqs. (1.5). 

uk* = jji ag,* + ah- [ + A-j u,* + bkp 
84 x- f--1) 

(I.3 

If the eigenvalues of the matrix consisting of the coeffltienb of the required coordi- 
nates of Eqs. (1.9) are different from unity, then Eqs. (1.9) have a uonxero SoltltWL 
However, by virtue of the piecewise continuity of the system under con&&ration we 
must also require fulfillment of conditions (1.4). In accordance with (1.9) and (1.8) 
the values u,* and h** can be expressed as 

%k* = Al&Y--1) zt, u,** = A,~+(--1) I-& (1.10) 

From (I. 10) we infer that inequalldes (1.4) are fulfilled if 

x+ (-- 1) x- (-4) < 0 (1.11) 

Condition (1.11) is the criterion of doub~g of the osciilation period with C-bifurca- 
tions. It is practically convenient, since to solve the problem of appearance of a sub- 
harmonic oscillation we need merely determine the signa of the corresponding charac- 
teristic polynomials for 2 = -1 in the limiting case of coincidence of two pkriodic 
states. This does not entail a special choice of the system of phase coordinates as requi- 
red in the theoretical proof of the possibility of period doubling. Condition.(L II) is 
related to the character of stability of periodic states and is invariant relative to the 
choice of coordinates. 

2, One of the important problems of the theory of bifurcations of periodic motions is 
the determination of the so-called “dangerous boundaries”. The notlou of hapus 
boundaries introduced in 143 for dynamic systems with analytic right sidts can be natu- 
rally extended to the case of C-bifurcations in pie~~~-~n~~~ system, Fo~ow~g 
Andronov (see the Preface to f43) ,we define a dangerous C-bifincation bound&y as the 
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boundary of existence of a periodic state whose slightest violation results in uncontrol- 
lable (by choice of a sufficiently small disturbance) growth of the deviation of the state 
of motion from the state under consideration. 

The case of merging of two periodic states followed by their disappearance is one of 
dangerous C-bifurcation. Linearized equations (Ll), (1.2) readily yield the dangerous 
C-bifurcation criterion in a form similar to condition (1.11). 

let a fixed point M* of the mapping T+ and a fixed point M** of the mapping T- 
exist for some value of the parameter p. Setting the values u k’ = u k = u k* in 

(1.1) and the values 1~~’ = Uk = Uk** in (1.2). we obtain the following values for 

the coordinates : 
u,* = &CL f. . . . . LA,** =&-gl-i- . . . (2.1) 

Requiring fulfillment of the conditions u,* > 0 and u,** ( 0, we arrive at the 
following dangerous C-bifurcation criterion : 

x+ (+ 1)X’ (+ 1) < 0 (2.2) 

Note 2.1. We know 153 that doubling of the oscillation period and merging of 
two periodic states with their subsequent disappearance can occur in dynamic systems 
with analytic nonlinearity characteristics on the boundary of a steady state. The former 
takes place when one of the roots of the characteristic polynomial becomes -1 on the 
boundary iv_ , x (-1) = 0 (2.3) 

the latter occurs for z = +I on the boundary N+, 

x(+f)= 0 (2.4) 

With the corresponding transition from piecewise-continuous characteristics to conti- 

nuous characteristics, conditions (1.11) and (2.2) become Eqs. (2.3) and (2.4), so that 
the general picture of the dependence of trajectory behavior on the parameter remains 
unchanged. 

This fact characterizes the coarseness of the parameter space of a dynamic system 
relative to the class of nonlinear characteristics [2] and points to a profound connection 
between the behavior of a real dynamic system and the C-bifurcations of motion in the 
chosen piecewise-continuous mathematical model of this system: of the three possible 
cases of behavior of a system with C-bifurcations only the case of transition of a perio- 
die state of one type into a state of another type is a consequence of the choice of mo- 
del. It is therefore expedient to study the C-bifurcations of the periodic motions of 
piecewise-linear models of dynamic systems in investigating the qualitative structure 
of the parameter space ; this is because such models are more amenable to analysis than 
the bifurcations Ni and N+ in models with continuous nonlinearity characteristics. An 

example using this approadh appears in the last section of the present paper. 
Note 2.2. The problem of preservation or violating of stability of a state with 

C-bifurcation can be solved by analyzing the roots of the corresponding characteristic 
polynomials. However, certain general conclusions can be drawn for specific cases. 

Let both periodic states taking part in a bifurcation be stable. Then doubling of the 
period and merging of two states are impossible. since the signs of the characteristic 
polynomials for z = --1 or z = fi are the same, so that conditions (1.11) and (2.2) 
are not satisfied. This case of C-bifurcation corresponds to a change in the type of 
periodic motion, 
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Suppose now that a C-bifurcation involves traasftion of a stable state into an unstable 
one. The continuity of the change in topology of the phase space is preserved [S, 6] if 
the transitfon is accompanied either by the appearance. of a stable oscillation or by the 
disappearance of an unstable oscillation of doubiltd per&d. We note that the latter case 
CMMIJponds to a daugeroua C-bifurcation. 

8, For example, let us consider doubling of the period and dangerous C-bifurcations 
of forcts oscillatious of a linear os&Batory system on eneouzrrering a diapaknent limi- 

The equation of system motion for 2 < d in dimen- 
sioniess form is 

2” + 21Lx’ + 2 = P (z) (3.4) 
where P (T) is a ‘I!-periodic function of time, and the 
coefficient A characterim linear iki~on(O < h < I). 

Fig. 2 The solution of linear equation (3.1) can be written as 

z (r) = P 0) + ey-70)(cI sin 6 (z -- to) + c, co3 6 (z - r*)) (3.2) 
Here p (7) is the particular solution of the inhomogeneous equation, i. e, the steady 

forced oscilkious of the system ; c, and c, are integration conataura which are deter- 
mined by the values of q and z’,, at the instant z = z,; the coefficient 6 = vi-_ 

kt us rewrite solution (3.2) in the form of the equations of the point mapping oorre- 
spending to the segment of the phase trajectory lying between the point kf’t (51, Z’i, ?i) 
and the point &fi(xj, ~‘1, Z.j) , 

2: -p * 

+ fa ’ Sin87*j = 0 (3.3) 

xj “-- g(Xi.9 Zi, Zj) = pj’ + emxrij X 

x (i&‘- 
i 

pi) COS &$j - + sin 67ij 
1 

S.-Pi 
- t sin 6T,j 

8 1 

T*j X Zj - Zi 

If the system oscillationa do not reach the limiter, then Eqs. (3.3) define the behavior 
of the system both in the transient state (trajectory Mdw, in Pig. 3a) and in the steady 
state, where = (4 = P (‘Ff* x* b) = P- w (3.4) 

Equations (3.3) are neassary in this case for writing out the characteristic polynomial 
x” (z) = 0. The points M, = Mi and MI = &.fi correspond to xf = ~1 = 0. 
Varying Eq. (3.3) in the variables xt’, $, XJ’, T$ in the nei~rh~ of penlodic 

Fig. 3 
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motion (3.4) and setting zfj = T, 8zf’ = z&q’, 62j = ZBZi, we obtain 

Substituting the values of the partial derivatives obtained from Eqs. (3.3) into (3.Q 
we arrive at the expression 

x+ (21 = &):O’ (z” - 2ie-XT cos (BT) + e-y (3.6) 
From this we obtain the value of the characteristic ~~ynorn~l for 2 = * 1, 

x+ (* 1) = so’ I(e- 3: cos My + sins WI > 0 (3.7) 
If the system oscillations reach the limiter, then Eqs. (3.3) determine its behavior 

only on the segments M&U, and M&Ifs of the phase trajectory (Fig, 3~). Let the 
equations of the point mapping of the surface x = d into itself corresponding to the 
segment M,M, of the trajectory of motion with an operating limiter be expressed in 
the form 

‘G2 - Xl - 3$ CI, (z.1) = 0, zs* = zr* or (zr) (3.8) 
Varying Eqs. (3.3) and (3.8), respectively, for the trajectory segments Map, Mini,, 

M.-$f, in the neighborhood of forced oscillation (3.4). setting 

“cs - To = T, 8x; = &x0’, 82, = Aho 
and carrying out the necessary operations, we arrive at the following characteristic poly- 
nomial : 

x- (2) = ~-‘xO:,’ xl” z@’ (1 + xl.’ @ - $) sin 6T (3.9) 

In the case of C-bifurcation (Fig. 3b) the value xa’ > 0, and zr” < 0, since the 
point of tangency corresponds to X,a, . Hence, 

sign x- (2) = sign (2 (1 + x1” @ - Or) sin QT) (3.10) 

by virtue of (3.7) the value x+ (& 1) > 0, so that in the problem under considera- 
tion we obtain the condition of a dangerous C-bifurcation (2.2) involving the merging 
of two states followed by their disappearance in the form 

(1 + z; 0 - @r) sin 8T < 0 (3.11) 
and period doubling condition (1. ll} in the form 

(1 + x; if, - a,) sin 8T > 0 (3.12) 

The first factor in (3. II). (3.12) reflects the properties of the limiter; the second 
factor reflects the properties of the linear oscillatory system. 

Let us note an important distinctive feature of the bifurcation in question. Since 

@f / a’6AJr = xi’ -f 0 at the instant of contact, it follows that the polynomial X’ (2) 
has the roofs z1 -+ 0 and 2s --f 00. which indicates the instability of the nonlinear state 
taking part in the bifurcation. Hence, on fulfillment of (3.11) the state of stable forced 
oscillations of the linear system merges with the unstable nonlinear state of motion, If 
condition (3.12) is fulfiIled, then the stable state of the linear system becomes an unsta- 
ble nonlinear state. This is accompanied either by the vanishing of the unstable state 
or by the appearance of a stable subharmonic state of doubled period. 

On merging of the stable periodic state with the unstable state the dynamic system 
experiences a “hard” transition to another stable state of operation. In the simplest 
case the latter state takes the form of a periodic motion of the same type as the vanished 
unstable state. Condition (3.11) becomes condition (3.12) for sin 82’ = 0 or 
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(3.13) 

Expression (3.13) defines certain nodal bifurcation points in the parameter space of the 
dynamic system from which several bifurcation boundaries of various types must emerge. 

The results obtained in the present study and the behavior of a system on the stability 
boundary of a state as known to us from bifurcation theory [S] enable us to “synthesize” 
the possible structures of these nodes qua~tatively. Thus, Fig. 4 shows the two simplest 
structures. Here the boundaries N+ correspond to the merging of stable and unstable states 
of a single type when the root of the characteristic polynomial assumes the value + 1. 
The boundary N_ comsponds to sofi dying of the period on appeararroe of the root 
z = -1. On the bound&ry C, the state involving two segments of limiter operation into 
a one-segment state with preservation of the oscillation period and stability. 

The state of stabk forced osoillations of a liriear system changes into a nonlinear state 
occasioned by the limiter at the boundaries Cs and Cs. This can be accompanied either 
by a soft (Fig.4a) or by a hard (Fig.4b) doubling of the oscillation period at the C-bifur- 
cation boundary c, . To deterinine which of the cases of doubling corresponds to the 
foroed oscillations nnder consideration, we must investigate the stability of the two-turn 
periodic state with C-bifnrcatiorh The trajectory of this state of mot&on <Fi&3d) con- 
sists of the segments N&MI, MsMs and HsMs defined by Eqs. (3.3) and of the segment 
MIMo defined by (3.8). After some simple but cumbersome operations of deriving and 
simplifying the appro@%ate character&& pp~ynomial. we arrive at the fOlkWing expres- 

Sian : x (2) - - &%2;‘2~ 2+= (i + z; Q, - @$ sfn 28T (3.14) 
Thus, one of the roots of x(2) = 0 also increases without limit in the case of a doubled 

oscillation period as XI’ 4 0, and the state turns out to be unstable. Henee. in the domains 

Fig. 4 

of parameter variation satisfying condition (3.12) we expect a hard doubling of the osoil- 
lation period {Fig. 4b). Quite nahtrrily , a structure of decomposition of the parameter 
space into domains of periodic motions of various types more complicated than that in 
Fig. 4 is possible in the neighborhood of bifurcation nodes. 

4, The above condition of per%od doubling with C-bifhrcadons (expe?Mon (3.12)) is 
quite camme relative to the nonlinearity charroteristic of the oscillatory system under 
consideration, It is therefore interesting to verify whether the eondfttons o&&ted for 
a piecewise-linear system are also applicable to sysnsms with a “smoothn noniinearity 
characteristic. 

To this end we begin by considering linear oscillatory system f3.1) with two symrnet- 
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rically positioned fixed limiters. As our relation (3.8) between the coordinates of the 
initial and final points of thr trajectory MIMs in this case we can take the law of instan- 
taneous impact with the velocity restitution coefficient R (0 < R C 1). 

72 - z1 = 0, 22' =-Rx1 (4.1) 

Hence, in expression (3.8) we have 

19 @II = 0, or (161) = - R 

The characteristic polynomials corresponding to symmenic periodic states are redu- 
cible to the form 

II+ (2) = x0’ (z? + 2~e-‘I*~~ cosV,GT + e-XT) (4.2) 
x- (z) = 6%~ (1 + R) x1” e”*/*hT sin ‘1&T 

and period doubling condition (1.11) reduces to sin V,6T ( 0. We find that the 
sprouting of subharmonic oscillations of order ‘1s is possible if the ratio of the natural 
frequency & to the frequency o = 2n / T of external excitation satisfies one of the 
COllditiOIB 

2n + 1 < 6 fo < 2 (n + if, n = 0, 1, 2, . . . (4.3) 
Let us consider the system with the nonlinearity chara@eristic expressed by the third- 

degree polynomial p] 2” $ hz’ + crx + e,P = Bcos2r (4.4) 

@< 1, Cl + cs = i) 

We obtain an approximate relationship between the natural o@lation frequency and 
the amplitude from (4.4) by setting B = 0 and seeking the solution in the form z = 
=Xcos8r. 8% E cr f s/s caxs (4.5) 

The amplitude of the forced oscillations can be determined from the external force 
frequency by means of the approximate expression p] 

B 
x=Ji--o2./ W 

Let us use expression (4.3) obtained for a piecewise-linear system to estimate the 
domains of appearance of subharmonic oscillations of order I/* in system (4.4). To this 
end we substitute the value of 6 obtained from (4.5). (4.6) into condition (4.3), 

2n+t&[ c1 + 3c3@ 
4 (1 - Us)2 1 vz 

<2(n+1) (n-012 , * ,.*. 1 (4.7) 

The above result can be compared with the data obtained both experimentally and 
by analog computer by Hayashi for subharmonic oscillations of order l/s (see @I). Set- 
ting 0 = 2, cl z5 0, and taking as the unit the value of B*,corresponding to the center 
of the first domain, we obtain from (4.7) the following intervals of relative amplitude 
BP in which the subharmonic oscillations under consideration are possible : 

(0.66 - 1.33), (2X10-2:66), (3.33 - 4.00) ,... 

Hayashi p] obtained only two intervals for the case of a zero constant external force 
component (Figs. 7.22 and 7.25 in p]). 

After a similar division by B* these intervals turn out to be as follows: (0.9-l. 1). 
(2.0-2.3) according to the results obtatned by analog computer, and (0. 8-1.2),(1.8- 
-2.1) according to the experimental results. A damped system was studied in both cases. 
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The problem of the passage to the limit from three-dimensional problems of elasticity 
theory to two-dimensional problems has been investigated in fi, 21 for multilayered 
plates. A first iterarion process has been constructed therein on the basis of methods 
developed in [3, 4% 

A construction of homogeneous solutions of elasticity theory problems for sandwich 
plates of symmetric configuration is given below. As in the case of a homogeneous 
plate Es], it is shown that the complete solution consists of a biharmonic. potential and 
vortex solution. The potential and vortex solutions are in the nature of an edge effect, 
Comparing them to the case of a homogeneous plate, shows that the edge effects can be 
both weaker and sttonger, depending on the physical and geometric parameters of the 
sandwich plate. 

The accuracy of some applied theories [S] ls analyzed on the basis of the solution 
constructed, and limits for their applicability are esrabIished. 

1. Let us consider asandwiehplate comprised of isotropic layers which are symmetric 
relative to the middle plane of the middle layer 
(Fig. 1). Let pr denote the shear modulus, i- the num- 
ber of the layer, ui the Poisson’s ratio. Let the outer 
layers of thickness B have the elastic characteristics 
vrand CL*, and the inner layer of thickness % the 
elastic characteristics vs and p2. 

Fig. 1 Let us assume the outer plane faces to be stress- 


